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We study the effects of the long-range disorder potential and warping on the conductivity and mobility of
graphene ribbons using the Landauer formalism and the tight-binding p-orbital Hamiltonian. We demonstrate
that as the length of the structure increases the system undergoes a transition from the ballistic to the diffusive
regime. This is reflected in the calculated electron-density dependencies of the conductivity and the mobility.
In particular, we show that the mobility of graphene ribbons varies as ��n��n−�, with 0���0.5. The
exponent � depends on the length of the system with �=0.5 corresponding to short structures in the ballistic
regime, whereas the diffusive regime �=0 �when the mobility is independent on the electron density� is
reached for sufficiently long structures. Our results can be used for the interpretation of experimental data when
the value of � can be used to distinguish the transport regime of the system �i.e., ballistic, quasiballistic, or
diffusive�. Based on our findings we discuss available experimental results.
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I. INTRODUCTION

The two-dimensional allotrope of carbon graphene has
become a subject of intensive research since its isolation in
2004.1 This is because of its fundamental significance, its
unusual electronic properties, as well as its potential for nu-
merous applications �for a review see, e.g., Ref. 2�.

A very interesting and not fully resolved problem is the
impact of various mechanisms such as disorder, substrate,
environment, etc., on the transport properties of graphene.
Particular attention has been devoted to studies of the effect
of charged impurities �located in the substrate or on its sur-
face� which is widely considered to be the main mechanism
limiting the mobility in graphene.3–8 Indeed, recent experi-
ments on suspended graphene sheets have demonstrated a
significant improvement of electrical transport in suspended
devices compared to traditional samples where the graphene
is supported by an insulating substrate.9,10

Another important mechanism that can affect the transport
in graphene is warping, when the graphene, as an elastic
membrane, tends to become rippled in order to minimize the
elastic energy.11–18 The warped character of a graphene sur-
face has been proved in diffraction experiments11 and scan-
ning tunnel microscope measurements17,18 for both sus-
pended samples and samples on an insulating substrate. It
has been demonstrated that due to the rehybridization effects
and the change in the next-to-nearest-neighbor hopping inte-
grals caused by curvature the warping generates spatially
varying potential that is proportional to the square of the
local curvature.13

The transport properties of the graphene can also be
strongly affected by its interaction with the substrate and
other materials which may exist in its environment.19 This
includes, e.g., the interaction of the graphene with the sur-
face polar modes of SiO2 or with water molecules that might
reside on the surface. These interactions have a long-range
character and because of the corrugated character of the

graphene and/or dielectric surfaces, the spatial variation in
these interactions would result in a spatially varying effective
potential affecting the transport properties of the graphene
sheet.

The purpose of the present paper is twofold. Our first aim
is to study the effect of warping on the transport properties of
graphene ribbons. The warping of the graphene affects both
the nearest-neighbor and the next-to-nearest-neighbor hop-
ping integrals, t and t�, respectively. Previous works dealt
primarily with the effect of the modification of the next-to-
nearest-neighbor hopping integrals.13,16 This is because the
next-to-nearest-neighbor hopping integrals t� are much more
strongly affected by out-of-plane deformations in compari-
son to the nearest-neighbor integrals t. On the other hand,
because the electronic and transport properties of graphene
are primarily determined by the nearest-neighbor hopping, it
is not a priori clear which effect is dominant. In this work
we, based on the realistic model of a warped graphene sur-
face and the tight-binding p-orbital Hamiltonian, numerically
study the effect of modification of the nearest-neighbor hop-
ping integrals t on the conductance of the graphene ribbons.
We find that the modification of the nearest-neighbor hop-
ping integrals due to the out-of-plane deformations of the
graphene surface has a negligible effect on the conductance
in comparison to the effect of charged impurities even for
moderate strength and concentration.

The second and main aim of our study is the investigation
of the transition from the ballistic to the diffusive behavior of
graphene ribbons with a realistic long-range disordered po-
tential. One of the motivations for this study is recent experi-
ments addressing the mobility of suspended and nonsus-
pended graphene devices of submicrometer dimensions. The
dimension of these devices is smaller than the phase coher-
ence length l� at the low temperature �l��3–5 �m at 0.25
K and �1 �m at 1 K� �Refs. 20 and 21� and the mean-free
path �mfp� approaches its ballistic value.10 This indicates that
these submicrometer devices can be in the quasiballistic and
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even ballistic transport regime requiring the Landauer ap-
proach for the description of the transport. At the same time,
the electron transport in these devices was analyzed in terms
of the classical mobility � which is appropriate for a diffu-
sive transport regime. In the present study we use a realistic
model of a disordered potential and the tight-binding
p-orbital Hamiltonian, and perform numerical calculations of
the conductance of graphene ribbons based on the Landauer
formalism. We demonstrate that as the size of the system L
increases the system undergoes a transition from the ballistic
to the diffusive regime. This is reflected in the calculated
electron-density dependence of the conductivity and the mo-
bility. In particular, we show that the mobility of graphene
ribbons varies as ��n��n−�, with 0���0.5. The exponent
� depends on the size of the system with �=0.5 correspond-
ing to short structures in the purely ballistic regime, whereas
the diffusive regime corresponds to �=0 �when the mobility
is independent on the electron density� and is reached for
sufficiently long structures. Our results can be used for the
interpretation of experimental data when the value of the
parameter � can distinguish the transport regime of the sys-
tem �i.e., ballistic, quasiballistic, or diffusive�.

It should be noted that various aspects of the effect of the
disorder on the electron transport in graphene have been ex-
tensively studied in the past.22–35 We stress that the focus of
our study is the understanding of the transition from the bal-
listic to the diffusive regime when the obtained electron-
density dependencies of the conductivity and the mobility
can be used to extract information on the character of the
transport regime of the system at hand. Note that in contrast
to many previous studies focusing on the metal-insulator
transition and the strong localization regime, in the present
paper we consider the case of a ribbon with many propagat-
ing channels when the localization length exceeds the size of
the system.

Finally, it is well established that edge disorder strongly
affects the transport properties of graphene ribbon.22–33,36,37

However, the measurements of the mobility are typically
done in the multiterminal Hall geometry where the edges do
not play a role. Therefore, in the present study we consider
perfect edges to make sure that the electron conductance is
influenced only by the long-range potential in the bulk. In
our calculations we use the long-range potential correspond-
ing to remote charged impurities. We however demonstrate
that the obtained results are not particularly sensitive to the
parameters of the potential. We therefore can expect that our
findings can be applicable not only to the charged impurities
but to other mechanisms discussed above �e.g., interaction
with the surface polar modes, etc.� that can also be described
by a similar long-range potential.

The paper is organized as follows. In Sec. II A we present
the basics of our computational method for calculation of the
conductance and the mobility of graphene ribbons. The mod-
els of warping and remote impurities are described in Secs.
II B and II C. The conductivity and the mobility of graphene
ribbons in the presence of warping and charged impurities
are presented and discussed in Sec. III. Section IV contains
the summary and conclusions.

II. MODEL

A. Basics

In order to describe transport and electronic properties of
graphene we use the standard p-orbital tight-binding Hamil-
tonian,

H = �
i

Vi�i��i� − �
i,j

ti,j�i��j� �1�

limited to the nearest-neighbor hopping. Vi denotes the ex-
ternal potential at the site i; the summation of i runs over the
entire lattice while j is restricted to the sites next to i. We
relate the spatial variation in the hopping integral ti,j with
bending and stretching of the graphene layer due to warping
as described in the next section.

The conductance G and the electron density n are com-
puted with the aid of the recursive Green’s function
technique.38,39 We assume that the semi-infinite leads are per-
fect graphene ribbons, and the device region is a rectangular
graphene strip and the imperfections �warping and long-
range impurity potential� are restricted only to this area �see
Fig. 1�. The zero-temperature conductance G is given by the
Landauer formula

G =
2e2

h
T , �2�

where T is the total transmission coefficient between the
leads. Then we calculated the conductivity

� =
L

W
G , �3�

the electron density

FIG. 1. The schematic sketch presenting the structure under
consideration: �a� top view of the device region �dark gray area�
attached to the semi-infinite graphene leads �light gray areas�, �b�
free standing, rippled graphene layer, and �c� graphene layer sup-
ported on the substrate �white area� in the presence of charged
impurities �dots�.
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n�E� = �
0

E

dE DOS�E� , �4�

the mobility

� =
�

en
, �5�

and the mfp

mfp =
h

2e2

�

	�n
, �6�

as functions of the Fermi energy E �W and L denote width
and length of device, respectively�. The density of states
�DOS� was computed by averaging the local density of states
�LDOS� over the whole device area. The LDOS is given by
the diagonal elements of the total Green’s function.39

All the results presented here correspond to the ribbons of
the zigzag orientation. Previous studies do not show a differ-
ence of the transport properties of the zigzag and armchair
ribbons in the presence of disorder �provided the disorder
concentration is sufficiently high�.30,33,37 Even in the ballistic
regime the overall dependencies n=n�E� and �=��E� are
qualitatively the same for both orientations �see Appendix�.
We therefore expect that all the results reported here remain
valid for the case of the armchair orientation as well.

The effect of warping is included in our model by modi-
fication of hopping integrals t resulting from stretching �con-
traction� and �-� rehybridization. The external potential of
remote impurities �with inclusion the effect of screening by
carries� is reflected in the model by changing of site energies.
In the next section we present a detailed description of mod-
els for the warping and remote impurities.

B. Corrugation

The mechanical properties of graphene can be modeled by
treating this system as an elastic membrane. One can distin-
guish two modes of deformation: stretching/contraction and
bending. Both of them affect the strength of carbon-carbon
�C-C� bonds within the graphene sheet by changing the dis-
tance between carbon atoms and the alignment of their p
orbitals, respectively. In the tight-binding model the hopping
integral corresponding to the hybridized �-� bond is given
by40,41

t�a,	,�,
� = cos�
�cos�	�cos���t2p�,2p��a�

− sin�
�sin�	�t2p�,2p��a� ,

t2p�,2p��a� = ��ea�
1 + a� +
2

5
�r��2 +

1

15
�r��3� ,

t2p�,2p��a� = ��ea�
− 1 − a� −
1

5
�a��2 +

2

15
�a��3� , �7�

where �� / t0�−4.23, �� / t0�−4.33, and ��3.07 Å−1 �t0
=2.7 eV and a0=1.42 Å� are the hopping integral and the
C-C bond length for flat �	=0,�=0,
=0� and unstrained
�a=a0� graphene ribbon, respectively. t2p�,2p� and t2p�,2p�

denote the hopping integrals for pure � bonds �in flat
graphene� and � bonds �for collinear p orbitals�. The spatial
orientation of the p orbitals is described by the angles 	 ,� ,

as presented in Fig. 2.

The analysis of diffraction patterns of corrugated
graphene11 provides information about the range in which
the normal to the surface varies. The measured range 
5°
allows to estimate from Eq. �7� an impact of bending on the
relative change in the hopping integral, 
t�a0 ,	 ,� ,
�
− t0� / t0�0.4%. The information about the distribution of
bond lengths in corrugated graphene is provided by the
Monte Carlo simulations.12 Using these data we can calcu-
late the change in hopping integrals 
Eq. �7��. The relative
change in the hopping integral for 	=�=
=0 and C-C bond
variation �a=a−a0, corresponding to the half width at half
height �HWHH� of the bond-length distribution,12 is approxi-
mately 
t�a�− t0� / t0�2%. This comparison shows that the
effect of strain �leading to a change in the bond length �a�
has a stronger impact on the modification of the hopping
integrals in comparison to the effect of bending �related to
the orbital alignment�.

In a corrugated free standing membrane the bending and
the in-plane strain are related to each other.42–44 For example,
in order to produce a local minimum/maximum or a saddle-
like area in a flat membrane it is necessary to introduce a
strain �see Fig. 3�. Bending and strain of the free standing
membrane can be related to the Gauss curvature,

cG�x,y� = c1�x,y�c2�x,y� , �8�

which is the product of the minimum c1 and maximum c2 of
normal curvatures45 �called by principal curvatures�. The cur-
vatures c1 and c2 are given by the inverse radiuses of the
local curvatures, �c1�=1 /R1 and �c2�=1 /R2, see Fig. 3. The
sign of c1 and c2 depends on whether an intersection of the
normal plane with the surface is convex or concave. The
positive value of cG at some point corresponds to a local
minimum/maximum which requires stretching of this region.
For a saddlelike area �and negative value of cG� the local

FIG. 2. Definition of angles 
used in Eq. �7�� describing align-
ment of p orbitals of neighboring atoms; the symbol a denotes the
bond length. �a� � denotes the angle between direction of orbital 2
and its projection �dashed arrow� on the plane P spanned on the
direction of the orbital 1 and the vector linking the centers of the
orbitals 1 and 2. �b� Top view of the plane P. All vectors depicted
here belong to the plane P and have the same meaning as in �a�.
Dotted lines are perpendicular to the vector linking centers of the
orbitals 1 and 2. Note that in the panel �b� the orbital 2 is not
shown.
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contraction of a flat membrane is needed. The only kind of
bending which does not produce strain corresponds to devel-
opable surfaces �i.e., surfaces with zero Gauss curvature�
such as, e.g., a cylindrical tube, see Fig. 3�c�.

Because of a small variation in the relative change in the
bond length �a /a0 we assume a linear dependence of the
bond elongation/contraction �a on the Gauss curvature,

�a�x,y� = kcG�x,y� . �9�

The value of the coefficient k was chosen to reproduce the
range of the �a variation computed by Fasolino et al.12 We
estimated the HWHH of �a from the C-C bond-length dis-
tribution presented in Ref. 12. Then, we computed the
HWHH of cG distribution for a large �generated as described
below� corrugated ribbon. The coefficient k was defined as
the ratio of the HWHHs for the �a and cG distributions.

In our model we do not take into account an influence of
the surface corrugation on the position of carbon atoms. The
positions of the centers of C-C bonds in flat lattice were
projected onto a corrugated continuous surface. In these
points the Gauss curvature was computed. The value of cG
was used to calculate the change in the bond lengths 
Eq.
�9��. The angles 	 ,� ,
 �see Fig. 2� were calculated from the
alignment of normals representing the � orbitals. The nor-
mals were computed at the ends of the projected bonds. The
computed angles 	 ,� ,
 and C-C bond lengths a=a0+�a
were used to calculate the next-neighbor hopping integrals

Eq. �7�� in the corrugated ribbon.

In order to model the geometry of a corrugated ribbon we
used the description of fluctuations of elastic membranes
presented in Ref. 12. The ripples on the graphene surface can
be expanded as a Fourier series of plane waves characterized
by the wave vectors q. In the harmonic approximation12 the
in-plane and out-of-plane displacement h are decoupled. In
this approximation the mean-square amplitude of Fourier
component hq is given by14,43

�hq
2� �

1

q4 . �10�

It can be shown that the mean square of the out-of-plane
displacement h scales quadratically with the linear size of the
sample,12

�h2� = �
q

�hq
2� � L2. �11�

According to Eq. �11� the height of the ripples increases
quadratically with the sample size. It means that a large
sample should be crumpled ��h2��L� which contradicts the
experiments. The results consistent with the experiments
where large sample remains approximately flat are repro-
duced by the Monte Carlo simulations12 where the depen-
dence �hq

2��q−4 
Eq. �10�� remains valid for short wave-
lengths only and saturates for the long wavelengths �
=2� /q����8 nm. This mechanism is responsible for the
existence of ripples of characteristic size ���, see Fig. 4.

Using this guidance we modeled the corrugated surface in
the following way. The surface h�r� was generated by a su-
perposition of plane waves,

h�r� = C�
i

Cqi
sin�qi · r + �i� , �12�

where r= �x1 ,x2� is the in-plane position vector. The direc-
tions �i of the wave vectors qi=qi
cos��i� , sin��i�� and the
phases �i were chosen randomly. The length of wave vectors
qi covers equidistantly the range 2� /L�qi�2� / �3a0�,
where L is a leading linear size of the rectangular area and a0
denotes the C-C bond length �we assume that L����. The
amplitude of the mode was given by the harmonic approxi-
mation 
Eq. �10�� Cq=	2�hq

2� for the wavelength ����, oth-
erwise it was kept constant and equal to Cq�, where q�

=2� /��. We introduced the normalization constant C to keep

the averaged amplitude of the out-of-plane displacement h̄

=	2�h2� equal to the experimental values h̄�1 nm for typi-
cal sizes of samples.

In Fig. 4 the graphene surface, generated by using the
procedure described above, is shown. Long-wave ripples of

FIG. 3. �Color online� �a� A saddlelike surface and �b� a local
minimum created by a nonuniform contraction �dark areas� and
inflation �light areas� of a flat region. �c� Developable surface �i.e.,
the surface with zero Gauss curvature�. Each red curve and the
vectors showing the radius of curvature lie in the same normal
plane.

FIG. 4. �Color online� The model of ripples on the graphene
surface. The black lines denote characteristic length of ripples 8 nm;
�b� the magnified small area marked in �a� by a black frame; M and
S stand for local maxima �minima� and saddle points, respectively;
�c� the Gauss curvature corresponding to a part of the surface pre-
sented in �b�—red/orange �blue� areas mark regions with positive
�negative� Gauss curvature.
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the size ����8 nm discussed above are clearly seen. A
small area marked in a box in Fig. 4�a� is enlarged in Fig.
4�b�. In this region two minima �blue spots�, one maximum
�yellow spot� and one saddle region �white area between
color spots� are shown. The relation between the geometry of
the surface and its Gauss curvature can be visible in Fig.
4�c�. The regions of stretching �red and yellow spots� and
contraction �blue spot� in Fig. 4�c� correspond to the position
of minima/maximum �M� and saddle area �S� in Fig. 4�b�,
respectively.

C. Long-range potential

A long-range character of the electrostatic interaction is
included in the model of bare Coulomb-type scattering cen-
ters,

Vi =
1

4��r�0
�
i�=1

Nimp e2

�ri − ri��
, �13�

where �0 and �r stand, respectively, for the vacuum and rela-
tive permittivities. For this potential the conductivity is pro-
portional to electron density, ��n /nimp.7 However, the ap-
plication of the bare Coulomb potential can be justified only
for low values of the electron density when the screening
effects limiting the range of the potential are negligible.

The simplest screened potential is given by the Thomas-
Fermi approximation,46

Vi = UTF �
i�=1

Nimp exp�− �TF�r − ri��
�ri − ri��

, �14�

where the parameters UTF and �TF describe the strength and
the range of the scattering centers for the Thomas-Fermi po-
tential. The inclusion of screening allows to achieve both the
limits of Coulomb scattering �for low n� and short-range
scattering �for high n�.

The singularity at ri=ri� in the Thomas-Fermi potential

Eq. �14�� can cause numerical difficulties. In our calculation
we utilize a model for screened scattering centers of the
Gaussian shape commonly used in the literature where the
potential on the site i reads22,23,31

Vi = �
i�=1

Nimp

Ui� exp�−
�ri − ri��

2

2�2 � , �15�

where the height of scattering centers is uniformly distrib-
uted in the range Ui�� 
−� ,��, see Fig. 5 for illustration. The
strength and correlation between the scattering centers is de-
scribed by the dimensionless correlator K,23,31

�ViVj� =
K��vF�2

2��2 exp�−
�ri − r j�2

2�2 � , �16�

�note that �Vi�=0�. The averaging is preformed for all pos-
sible configurations of system which differ only in the distri-
bution of the position of the impurities ri� and the strength
Ui� ��, �, and nimp are kept constant�.

For this impurity potential both the screening range � and
the impurity strength � are independent on the electron den-

sity and play the role of parameters. They are related to K by
following formula:23

K � 40.5ñimp��/t�2��/a0� , �17�

where ñimp=Nimp /N denotes the relative concentration ex-
pressed via the total number of impurities Nimp and the
atomic sites N in a sample. In our calculation we use nimp
=1012 cm−2 as a typical value given in the experiment.10 We
assumed that the screening range �=4a0. The strength of
impurities was chosen in order to get typical values of
correlator6,22 �we chose K=1,2 ,4 ,8�.

III. RESULTS AND DISCUSSION

Let us start with the comparison of the effects of warping
and charged impurities on the conductance of a graphene
ribbon. Figure 6 shows the conductances of a ribbon with
warping and flat ribbons with two representative impurity
concentrations nimp=1012 and 4�1012 cm−2 �dashed and
dotted lines, respectively�. The warping modifies the conduc-
tance only slightly. For low energies close to the charge neu-
trality point the conductance steps remain practically unaf-
fected. For higher energies the conductance steps become
somehow distorted with the conductance plateaus being
gradually shifted down and sharp minima appearing next to
the rising edges of the plateaus. At the same time, in the
presence of charged impurities even of a moderate strength
the conductance of the ribbon is distorted substantially. The
conductance steps are significantly washed out and the over-
all slope of the curve is lowered.

Our results thus demonstrate that the modification of the
nearest-neighbor hopping integrals t resulting from stretch-
ing �contraction� and �-� rehybridization has only a small
effect on the conductance in comparison to the effect of im-
purities. It should be also noted that the effect of the modi-
fication of the next-to-nearest hopping integrals t� is also
weak in comparison to a realistic impurity potential. For ex-
ample, Kim and Castro Neto13 estimated that the variation in
the effective electrochemical potential generated by a spatial
variation in t� is on the order of 30 meV, which is an order of
magnitude smaller than a corresponding variation in the im-

FIG. 5. �Color online� Illustration of the long-range potential,
Eq. �15�. The screening range is �=4a0 and the impurity concentra-
tion is nimp=1012 cm−2.
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purity potential.3,31 Hence, in our further analysis of the con-
ductivity and the mobility of graphene ribbons we will take
into to account the impact of charged impurities only.

Let us now turn to the investigation of transition from the
ballistic to diffusive regime of transport taking place as the
size of the system increases. Because of computational limi-
tations we keep in our study the width of the ribbon W con-
stant and increase its length L, such that the diffusive regime
is achieved when L /W�1. We however demonstrate below
that the presented results and conclusions remain valid even
for bulk diffusive samples with the aspect ratio L /W�1.

Figure 7 shows the conductivity � of ideal ballistic
graphene ribbons of different lengths L exhibiting a linear
dependence on the electron energy E. This behavior reflects
the corresponding linear dependence of the conductance G of
zigzag ribbons as a function of energy �see Appendix for
details�. Note that the conductance of an ideal ribbon in the
ballistic regime is independent on the length of the system.
Therefore, for fixed energy, the conductivity �= L

WG in-
creases linearly with the ribbon length L as illustrated in Fig.
7�c�. Apparently, in the ballistic regime, the conductivity
does not exist as a local property and cannot be considered as
material parameter because it is size dependent.

The conductivity of the ribbons of different lengths as a
function of the electron energy in the presence of impurities
is shown in Fig. 7�b�. The conductivity is strongly reduced in
comparison to the ideal conductance steps and is no longer a
linear function of the electron energy. Instead, it follows a
power-law dependence

� � E�, �18�

where the exponent � approaches �=2 for sufficiently long
ribbons 
see inset of Fig. 7�b��. Figure 7�c� shows the depen-

FIG. 7. �Color online� �a� The conductivity of �a� ideal ballistic
nanoribbons and �b� nanoribbons with impurities as a function of
the Fermi energy E. The nanoribbon lengths are L=31, 61, 123,
184, 369, and 738 nm corresponding to 250, 500, 1000, 1500, 3000,
and 6000 sites. The conductivities in �b� are averaged over ten
impurities configuration. The dashed lines show the fit ��E� for
the energies E�0.2t as indicated by a vertical dotted line. �Here
and hereafter we choose E�0.2t because for lower energies the
fitted dependencies deviate from the power-law behavior due to
sample-specific fluctuations�. The inset shows a dependence �
=��L�. The impurity parameters are nimp=1012 cm−2, K=2, and �
=4a. �c� The conductivity as a function of the ribbon length L for
ballistic ribbons and ribbons with impurities. The ribbon width is
W=53.1 nm �250 sites�. �Note that for the zigzag ribbons the same
number of sites in the x and y directions corresponds to somehow
different dimensions, e.g., 250�250 sites corresponds to 31
�53 nm2.�

FIG. 6. �Color online� Effect of warping and charged impurities
on the conductance of graphene nanoribbon of length L=30.6 nm
and width W=31.8 nm �250�150 sites�. The thin line shows the
conductance steps for an ideal ribbon. The bold line denotes the
conductance for a system with warping only; dashed and dotted
lines refer to the conductance of a ribbon with impurities �without
warping� with the concentration nimp=1012 cm−2 and 4
�1012 cm−2, respectively, averaged over ten impurity configura-
tions. The strength of the impurities is �=4a and K=2. The inset
shows an enhanced view of the conductance in the vicinity of the
first conductance step.
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dence of the conductivity � on the length of the system in the
presence of impurities. This dependence exhibits a clear
saturation of the conductivity for sufficiently large systems,
L�6000 sites �740 nm�. In order to understand these fea-
tures, in particular, the dependence of the conductivity on the
system size L, let us recall that the conductance of a disor-
dered system is expected to obey the scaling law

ln�1 + 1/g� = L/�loc, �19�

where �loc is the localization length and g=G /G0 is the di-
mensionless conductance �G0=2e2 /h being the conductance
unit�.47 In this study we focus on the transport regime with
many transmitted channels g�1. It follows from Eq. �19�
that this corresponds to the case �loc�L, i.e., the localization
length exceeds the size of the system and the conductance is
inversely proportional to the length, G�G0 /L. In this trans-
port regime referred to as a diffusive �or Ohmic�, the con-
ductivity � is therefore independent on the system size and
can be regarded as a local quantity. According to Fig. 7�c�
this transport regime is achieved for sufficiently long rib-
bons, L�6000 sites �740 nm�. For smaller L the system is in
a quasiballistic regime when the conductivity � depends on
the size of the system. In this case the conductance G is
apparently more appropriate quantity to describe the trans-
port properties of the system at hand.

Let us now turn to the analysis of the mobility of
graphene ribbons �. For a classical �Ohmic� conductor the
mobility is the fundamental material property independent on
the system size and the electron density. In contrast, for bal-
listic ribbons the mobility is size dependent and decreases
with increase in the electron density as ��n−0.5 �see Appen-
dix�. Therefore one can expect that the mobility of ribbons
varies as

��n� � n−�, �20�

where the exponent � ranges from 0 in the diffusive limit to
0.5 in the ballistic limit.

In order to calculate the electron mobility �=� /en we, in
addition to the conductivity �, have to calculate the electron
density n in the ribbons �note that this step represents the
most time-consuming part of our numerical calculations be-
cause in order to calculate n we have to compute the DOS
for all energies 0�E�EF�. Figure 8 shows the DOS for a
representative impurity configuration and electron densities
for ribbons of different lengths calculated from the DOS ac-
cording to Eq. �4�. For ideal ribbons, the DOS follows an
overall linear dependence on the energy with the singularities
corresponding to openings of new propagating channels
characteristic for quasi-one-dimensional systems. Because of
this linear increase in the DOS, the electron density for an
ideal ribbon follows a quadratic dependence on the energy,
n�E2 �see Appendix�. Figure 8�a� shows that the impurities
only smear out the singularities in the DOS of an ideal rib-
bon but do not reduce the DOS. Therefore, regardless of the
ribbon lengths the average electron density in the ribbons
with impurities is not reduced in comparison to the ideal
ribbons and follows the same quadratic dependence n�E2.
This behavior is expected for the transport regime at hand
when the localization length exceeds the size of the system,

�loc�L, such that the averaged LDOS is essentially indepen-
dent of the size of the system. Note that in the opposite
regime of the strong localization, �loc�L, the electron den-
sity in ribbons is strongly reduced due to the effect of
impurities.33

For low energies close to the charge neutrality point E
=0 the DOS of the system with impurities shows sharps
peaks whose positions are strongly system dependent, see
Fig. 8�a�. This is because in this energy interval the system is
in the strong localization regime with the localization length
being smaller than the system size �for an analysis of this
transport regime see Ref. 33�. In this energy interval the
DOS is strongly system dependent because it reflects a par-
ticular configuration of the impurity potential. This explains
some differences in the electron densities for different rib-
bons in Fig. 8�b� �especially for the shortest one with L
=250 sites� because the integration in Eq. �4� includes all the
energies �below Fermi energy�, including those close to E
=0 where the DOS can show strong system-specific fluctua-
tions.

Having calculated the electron density and the conductiv-
ity, we are in a position to discuss the mobility of the system

FIG. 8. �Color online� �a� The DOS as a function of the Fermi
energy of an ideal ribbon �solid line� and of a ribbon of the length
L=184 nm �1500 sites� for a representative impurity configuration.
�b� The dependence of the electron density n on the Fermi energy
for an ideal ribbon and for ribbons of various length with impuri-
ties. The parameters of the ribbons and the impurity strength are the
same as in Fig. 7. �Note that the electron densities for the ribbons
with the length L�250 sites are almost indistinguishable�.
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at hand. The mobility of the ideal ribbons of different lengths
L as a function of the electron density is shown in Fig. 9�a�.
This corresponds to the ballistic regime with �=0.5. For a
given electron density the mobility of the ballistic ribbons is
proportional to the ribbon length, ��L 
because �=� /en
and ��L, see Fig. 7�c��.

Let us now investigate how the mobility of a ribbon
evolves as we go from the quasiballistic to the diffusive re-
gime by increasing the system size. Figure 9�b� shows the
mobility of the ribbon with impurities as a function of the
electron density. As expected, this dependence satisfies Eq.
�20�. The dependence �=��L� is shown in the inset of Fig.
9�b�. This dependence clearly demonstrates that we approach
the diffusive regime �with the expected value of �=0� as the
length of the ribbons becomes sufficiently long �L
�740 nm�. This is fully consistent with the behavior of the
conductivity discussed above which exhibits a transition to
the diffusive transport regime as the length of the ribbon
increases.

The calculated dependence �=��L� is also consistent with
the energy dependence of the conductivity which approaches
the quadratic behavior ��E2 in the diffusive regime 
see
inset of Fig. 7�b��. Because n�E2 regardless of the regime
�ballistic, quasiballistic, or diffusive�, the mobility �=� /en
becomes independent on the energy �and thus on the electron
density with �=0� only when ��E2. To illustrate this we in
Fig. 9�c� present the dependence �=��n� which is plotted by
combining previously calculated dependencies �=��E� and
n=n�E�. As expected from Eqs. �5� and �20� it follow a de-
pendence

��n� � n�, �21�

where the exponent � ranges from 1 in the diffusive limit to
0.5 in the ballistic limit.

A crossover from the ballistic to the diffusive regime is
also manifested itself in the behavior of the mean-free path

Eq. �6��. Based on Eq. �21� the density dependence of the
mfp can be presented in the form

mfp�n� � n�, �22�

where the exponent � ranges form 0 �ballistic limit� to 0.5
�diffusive limit�. Figure 9�d� shows the dependence mfp
=mfp�n� for ribbons of different lengths and the inset of Fig.
9�d� illustrates the expected dependence given by Eq. �22�,
where �=0 corresponds to short ribbons in the ballistic re-
gime, whereas �=0.5 is approached for long diffusive rib-
bons. It is worth to stress that in the ballistic regime mfp is
larger than the width of the ribbons, whereas for longer rib-
bons the mfp is smaller �or comparable� to their length.

All the results for the conductivity, electron density, the
mobility, and mfp in the graphene ribbons presented above
correspond to the case of one representative impurity
strength nimp=1012 cm−2, K=2, and �=4a. It is important to
stress that the scaling laws discussed above are rather insen-
sitive to a particular realization of the potential configuration
or the impurity strength provided that the system is in the
transport regime when the localization length is larger than
the ribbon size. This is illustrated in Fig. 10 showing the
conductivity, the electron density and the mobility in

graphene ribbons for different impurity strength K
=1,2 ,4 ,8. As expected, the electron density is similar for all
ribbons, especially for high energies, see Fig. 10�b�. When
the impurity strength increases the conductivity apparently
decreases, see Fig. 10�a�. This decrease in the conductivity
leads also to the decrease in the mobility as shown in Fig.
10�c�. However, the exponents in the scaling laws 
Eqs. �18�
and �19�� are not particularly sensitive to the variation in the
impurity strength K. A small difference in scaling exponents
for different impurity strengths has a statistical origin and
this difference diminishes as a number of impurity configu-
rations used in calculations of each curve is increased.

Because of computational limitations the diffusive limit in
our calculations was reached by the increase in the length of
nanoribbons keeping their width constant. Because of this
reason most of the reported results correspond to the ribbons
with a small aspect ratio W /L�1. Do the obtained results
remain valid for relatively wide ribbons with the aspect ratio
W /L�1? In order to check this we fix the ribbon’s length L
and increase its width W approaching the aspect ratio W /L
�1. Figure 11 shows the calculated mobilities and mfp for
two representative nanoribbons with W /L�0.43 and 0.86.
The calculations show that the corresponding exponents �
and � do not depend of the aspect ratio, such that our results
remain valid even for wide sheets with W /L�1. This is not
surprising because with the chosen parameters even ribbons
with the small aspect ratio W /L�1 support many propagat-
ing modes, i.e., they are essentially �quasi-�two dimensional.

Let us now use our results to discuss available experimen-
tal data. In experiments, the electron-density dependence of
the mobility, �=��n�, the conductivity, �=��n�, and the
mean-free path, mfp=mfp�n� are accessible.9,10 The depen-
dencies 
Eqs. �20�–�22�� can therefore be used to extract in-
formation about the transport regime for the system at hand.
For example, for the mobility the exponent �=0.5 would
correspond to a purely ballistic transport regime, whereas �
=0 would describe a purely diffusive one. An intermediate
exponent 0���0.5 would indicate the quasiballistic trans-
port regime; the more close the value of � to 0, the more
diffusive the system is. Similar arguments applies to the con-
ductivity �and mfp� where the corresponding exponent �
�and �� lies between 0.5 and 1 �and between 0 to 0.5�. For
example, the mobility measured by Du et al.10 corresponds
to �=0.5 suggesting a purely ballistic transport regime. The
electron-density dependence of the mobility and conductivity
in graphene ribbons was also studied by Tan et al.8 and Bo-
lotin et al.9 The measured conductivity followed the sublin-
ear behavior 
Eq. �21�� with ��1. Both groups attributed the
deviation from the linear dependence to the effect of the
short-range scattering. Taking into account that the mean-
free path in the graphene device is comparable to the device
dimension, we can provide an alternative interpretation of
their findings arguing that the observed in Refs. 8 and 9
sublinear behavior represents a strong evidence of the quasi-
ballistic transport regime.

IV. CONCLUSIONS

In the present study we perform numerical calculations of
the conductance of graphene ribbons based on the Landauer
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formalism and the tight-binding p-orbital Hamiltonian in-
cluding the effect of warping of graphene and realistic long-
range impurity potential. The effect of warping is included in
our model by modification of the nearest-neighbor hopping
integrals resulting from stretching/contraction of the surface
and the �-� rehybridization. We find that the modification of
the nearest-neighbor hopping due to the warping of the

FIG. 9. �Color online� The mobility as a function of the electron
density for �a� prefect zigzag nanoribbons and for �b� zigzag nan-
oribbons ribbon in the presence of charged impurities. The inset in
�b� shows a dependence �=��L�. �c� The conductivity and �d� the
mfp as a function of the electron concentration for nanoribbons in
the presence of charged impurities. The insets in �c� and �d� show
the dependencies �=��L� and �=��L�. The thin horizontal line in
�d� marks the length of the longest �L=6000 sites� ribbon. The
parameters of the ribbons and the impurity strength are the same as
in Figs. 7 and 8. The dashed lines in �b� and �c� show the fits
���� and ���� for the electron densities n�1.5�1013 cm−2

�as indicated by a vertical dotted line�. The mobilities, conductivi-
ties, and mfps are averaged over ten impurity configurations.

FIG. 10. �Color online� �a� The conductivity, �b� the electron
density versus the Fermi energy, and �c� the mobility versus the
electron density for graphene nanoribbon for different impurity
strengths K=1,2 ,4 ,8, �=4a, and nimp=1012 cm−2. The ribbon’s
dimension is L�W=123�53 nm2 �1000�250 sites�. The dashed
lines in �a� and �c� show the fits according to Eqs. �18� and �19� for,
respectively, E�0.2t and n�1.5�1013 cm−2. �The beginning of
respective fitting intervals is indicated by vertical dotted lines�. The
conductivities are averaged over ten impurity configurations.
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graphene surface has a negligible effect on the conductance
in comparison to the effect charged impurities even for mod-
erate strength and concentration.

The main focus of our study is a transition from the bal-
listic to the diffusive transport regime in realistic graphene
ribbons with long-range impurities which occurs as the size
of the system increases. We keep in our study the width of
the ribbon W constant and increase the ribbon length L, such
that the diffusive regime is achieved when L /W�1. We
however show that the results presented in the paper remain
valid even for wide sheets with W /L�1.

We demonstrated that the conductivity of graphene rib-
bons follows a power-law dependence ��E� with 1��
�2. The case �=1 corresponds to the ballistic regime
whereas �=2 corresponds to the diffusive regime which is
reached for sufficiently long ribbons. In the ballistic regime
the conductivity scales linearly with the length of the system
L, whereas in the diffusive regime the conductivity saturates
with L.

We find that the average electron density in the ribbons
with impurities is practically not reduced in comparison to

the ideal ribbons and follows the same quadratic dependence
n�E2 regardless of the transport regime �ballistic, quasibal-
listic, or diffusive�. This behavior is consistent with the ex-
ponent �=2 reached in the diffusive case because in this
case the mobility �=� /en becomes independent on the en-
ergy �and hence on the electron density� as expected for the
diffusive regime.

In experiments the electron-density dependence of the
mobility, �=��n�, is accessible. We find that the mobility of
graphene ribbons varies as ��n��n−�, with 0���0.5. The
exponent � depends on the size of the system with �=0.5
corresponding to short ribbons in the ballistic regime,
whereas the diffusive regime �=0 �when the mobility is in-
dependent on the electron density� is reached for sufficiently
long ribbons. Our results can be used for the interpretation of
the experimental data when the value of the parameter � can
be used to distinguish the transport regime of the system
�i.e., ballistic, quasiballistic, or diffusive�. The corresponding
electron-density dependence for the conductivity is ��n�
�n−�, where the exponent � ranges from 1 in the diffusive
limit to 0.5 in the ballistic limit. Based on our findings we
discuss the available experiments and provide an alternative
interpretation of some experimental conclusions.8–10

Our calculations also demonstrate that in the quasiballistic
regime �which corresponds to many experimental studies�
the mobility and the conductivity of the structure at hand
strongly depend on the system size. Therefore in this regime
the conductivity does not exist as a local property and the
mobility cannot be considered as a well-defined material pa-
rameter because of its dependence on the system size. It
should finally be noted that the possibly significant effect of
warping-induced electrostatic potentials due to a modulation
of the van der Waals force between the graphene and the
substrate on the mobility is beyond the scope of the present
paper and will be discussed in a separate work.
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APPENDIX: ELECTRON CONDUCTIVITY, MOBILITY,
AND ELECTRON DENSITY IN THE BALLISTIC

REGIME

In the low-energy limit close to the charge neutrality point
E=0 the electron density of the zigzag graphene nanoribbon
of the width N reads48

n�E� =
4

�	3

1

t0a0

1

W
	E2 − Em

2 	��E� − �Em�� , �A1�

where the threshold energies have the form49

FIG. 11. �Color online� �a� The mobility and �b� the mfp of two
representative nanoribbons with different widths W=250 sites �53
nm� and 500 sites �106 nm� �red and green curves correspondingly�.
The length is kept fixed L=1000 sites �123 nm� such that the aspect
ratio W /L is equal 0.43 �W=250 sites�, respectively, 0.86 �W
=500 sites�. The aspect ratio is expressed as the ratio of the actual
dimensions of the ribbons �indicated in the figure in nanometer�.
�Note the number of sites per unit of length is different along and
across the ribbon�. We used the same strength and concentration of
impurities as in Fig. 9. The calculations are averaged over ten im-
purity configurations.
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Em =
3�

8
t0a0

1

W
�m +

1

2
�, m = 0,1,2, . . . �A2�

Noticing that the function 	E2−Em
2 approaches E for E

�Em we can write the electron density in the approximate
form

n�E� �
4

�	3

1

t0a0

1

W
E�

m

	��E� − �Em�� . �A3�

Summation of 	 functions in Eq. �A3� gives a number of
propagating modes at the given energy. Expressing this num-
ber with energy by making use of Eq. �A2� and approximat-
ing E�Em we obtain

n�E� �
32

�23	3

1

t0
2a0

2E2. �A4�

A comparison of the approximate expression �A4� with the
exact one, Eq. �A1�, is shown in Fig. 12�a�.

In the low-energy limit close to the charge neutrality point
E=0 the conductivity of the zigzag graphene nanoribbon of
the width N reads49

��E� =
2e2

h

L

W
�
m

2	��E� − �Em�� + 1� . �A5�

Using similar approximations as above we obtain

��E� �
2e2

h

16

3�

1

t0a0
L�E� . �A6�

Finally, substituting Eq. �A6� and �A4� into the definition of
the mobility 
Eq. �5�� and the mean-free path 
Eq. �6�� we
obtain

� =
�

en
�

e

h
�	3t0a0L�E�−1 =

e

h

4	2
	4 3

Ln−0.5 �A7�

and

mfp =
h

2e2

�

	�n
=

4
	2�	4 3

L . �A8�

A comparison of the approximate expression for the conduc-
tivity, the mobility with the exact ones is shown in Figs.
12�b� and 12�c�.

The above expression for n�E�, ��E�, ��n�, and mfp are
obtained for the zigzag ribbons. Corresponding expression
for the armchair nanoribbons showing qualitatively the same
dependence on E and n can be easily derived in a similar
way utilizing the expression for the threshold energies Em
provided by Onipko.49

It should be noted that expressions �A1�, �A3�, and �A4�
for the electron density n do not include a contribution from

the edge states existing in the zigzag nanoribbons for the
energies close to E=0. Because of this the electron density of
the nanoribbon shown in Fig. 12 vanishes at E=0 and the
mobility � exhibits a singularity. Accounting for the contri-
bution from the edge state in exact numerical calculations
leads to the finite values of n and � at E=0. However, for
high energies sufficiently away the charge neutrality point
this contribution does not practically affect n and �, which
justifies the utilization of expressions �A1�–�A7�.

FIG. 12. �Color online� �a� The electron density, �b� the conduc-
tivity, and �c� the mobility as functions of the Fermi energy for a
zigzag nanoribbon. Red lines correspond to the approximate expres-
sions �A4�, �A6�, and �A7�, whereas the black lines to the exact
expressions �A1� and �A5�.
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